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SUMMARY

An analytical study was performed to provide information on the heat

loss to space from three radiator finned-tube configurations in which

there is radiant interaction between fins and tubes. Numerical results

for the heat-transfer characteristics of these configurations were ob-

tained under the condition that the surfaces are blackbody radiators.

A comparison showed the heat-loss results for the various configurations

to be of very similar magnitude for equal fin weight. A method of analy-

sis for the case of nonblack diffuse surfaces was also formulated.

INTRODUCTION

The use of radiating fins as a means for augmenting the heat-

transfer performance of space radiators has received wide consideration

in recent years. In response to the need for design information, ana-

lytical studies have been carried out to determine the rate of heat loss

from fins to space under the combined action of surface radiation and

internal heat conduction. The majority of such investigations has been

concerned with fins that are essentially thin plates whose surfaces may

radiate to space. Heat is transferred into such a fin by conduction

through an edge that joins a tube within which flows a hot fluid.

In the initial studies of such plate fins, a simple model _as

adopted wherein the radiant interaction resulting from mutual irradi-
ation between fin and tube was not included. References i and 2 are

representative of several analytical treatments carried out along these

lines. Radiators of practical interest, however, may consist of finned-

tube configurations in which there is substantial radiant interaction

between radiator elements. In practice, the detailed arrangement of

fins and tubes in the radiator may be determined by considerations re-

lating to fabrication, bonding, and assembly, to structural rigidit_

and to meteoroid protection. Ultimate design decisions may be based on



a compromiseamongthese several factors. It is therefore of interest

to know the heat-transfer characteristics of a range of radiator con-

figurations.

The aim of this investigation is to provide basic heat-transfer

information for three finned-tube configurations, all of which involve

radiant interaction between elements of the radiator. The analysis has

been carried out with the dual purpose of providing specific information

for each of the configurations and also of showing comparisons among the

heat-transfer performances of the several configurations. Numerical re-

sults were obtained for the case in which the surfaces of the fins and

tubes are blackbody radiators and the tubes are squared off. The method

of analysis for nonblack surfaces is also formulated in detail.

Studies of plate fin and tube configurations that include radiant

interaction between radiator elements are reported in references 3, 4,

and 5. Unfortunately, the results of references 5 and 4 have to be

regarded with some degree of uncertainty. This is because the angle

factors in the radiant interchange analysis were not correctly derived.

In addition, these references formulate the nonblack case by simply

inserting factors of emissivity c as multipliers of the emission

and absorption terms that appear in the blackbody analysis. Such a

treatment is only correct when there are no interreflections between

the participating surfaces. When interreflections do occur, it is

necessary to take account of the fact that the radiant flux leaving

a surface location includes both reflected and emitted energy. Refer-

ence 5 is concerned only with the central fin-tube configuration.

Numerical results are given for the case of black radiating surfaces.

These results are not precisely comparable with those of this study

inasmuch as the present analysis employs a squared-off model of the
tube surface.

This research was sponsored by the National Aeronautics and Space

Administration through the Office of Grants and Research Contracts.

A

B

F

H

SYMBOLS

surface area

radiosity_ radiation leaving surface per unit time and area

angle factor

incident radiation per unit time and area
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base surface height

thermal conductivity of fin

half-height of fin

parameter based on dimension _ _T_L2/ktconductance

rate of heat loss to space from fin and from portions of

base surface that interact with fin

absolute temperature

temperature of base surface

thickness of fin

dimensionless coordinate, x/L

position coordinate on fin

dimensionless coordinate, y/L

position coordinate on fin

dimensionless coordinate_ z/h

position coordinate on base surface

absorptivity

dimensionless radiosity, B/aT_

emissivity

temperature variable, T/_ b

reflectivity

Stefan-Boltzmann constant

angles defined in fig. 2

Subscripts:

b base surface

c due to conduction
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GENERAL CONSIDERATIONS

The specific finned-tube configurations that will be considered in

this investigation are pictured schematically in figure i. In the left

diagram of figure l(a), the tubes are contained between a pair of plane,

plate fins. This arrangement will be designated herein as the closed-

sandwich configuration. In practice, it will neither be possible nor

desirable to have a small region of contact between the tube and the

fin. Such a limited contact would give rise to a large thermal resist-

ance tending to inhibit heat flow from the tube into the fin. It would

appear desirable to employ fillets of high-thermal-conductivity material

to increase the area of contact. This suggests that a suitable model

for analytical treatment of the radiant interchange within the space

betweenthe fins might be a squared-off tube. This idea has been adopted

herein and is pictured in the right diagram in figure l(a). The second

configuration to be considered is similar to that already discussed_

except that one plate is removed. This is pictured in figure l(b), with

the left diagram showing circular tubes and the right diagram the model

adopted in the analysis. This assembly will be designated as the open

sandwich. The last of the configurations that will be analyzed is the

central fin and tube radiator_ which is pictured at the left in

figure l(c). To permit meaningful comparisions with the prior cases, a

squared-off model of the central fin will be employed as shown at the

right in figure l(c).

The length of the various finned-tube assemblies in the direction

normal to the plane of figure i is sufficiently great so that end effects

need not be included in the derivation of the radiation angle factors.

Additionally_ temperature variations in this direction are also assumed

sufficiently gradual so as to maintain the two-dimensional character of

the problem.

Dimensional nomenclature and coordinates appropriate to the analy-

sis are shown in figure i. The squared-off tube surface3 hereinafter

called the base surfacej is assumed to have a uniform temperature Tb.



If consideration is given to the parameters that govern the heat trans-
port, it is found that, after dimensionless variables have been formed,
there emerge:

T/h, (Ncl-- T T2/kt (1)
L

The first of these is purely geometrical and governs the aspect ratio of

the cavity formed by the fins and tubes. The N c parameter is essen-
tially a ratio of thermal conductances, comparing the radiation capa-

bility at the surface with the heat conducting capability of the fin.

For highly conducting fins, Nc is very close to zero; for lesser con-

ducting fins, N c takes on larger values. Hereinafter, Nc will be

termed the conductance parameter.

The number of emissivities _ and absorptivities _ that enter

the problem depends on the details of the particular system. The radi-

ation properties of the base surface may either be different from or the

same as those of the fins. There may or may not be a difference between

the radiation characteristics of surfaces radiating to space and those

radiating internally. If radiation from an external source such as the

sun is involved, the absorptivity for solar radiation may be different

from that for infrared radiation. The description of radiation from an

external source would involve at least two additional parameters, one

for the magnitude of the incoming energy and a second for its angle of

incidence.

In view of the large number of parameters, it is clear that an

attempt at a completely general treatment would involve a massive compu-

tational effort, especially since numerical solutions of nonlinear,

integrodifferential equations are required. This suggests that the role

of each parameter be carefully reconsidered. In this connection, it is

reasonable to expect that surface materials having the highest practi-

cally obtainable emissivity will be used. Such emissivities may very

likely be attained by the use of coatings. Thus, in practice, the

emissivity should not differ too much from that of a black surface.

With this in mind, the main emphasis of this study will relate to black

surfaces, and this is the condition for which numerical results will be

obtained. The use of black surfaces results in a computational problem

much more tractable than that encountered when nonblack surfaces are

used. However_ for completeness, a formulation of the problem for non-

black surfaces will be carried out in the appendix. In addition to the

condition of black surfaces, the present analysis will also be confined

to the situation in which radiation from an external source is negli-

gible compared with energy emitted by the finned-tube system.



T_PERATUREDISTRIBUTION

Governing Equation

In carrying out the analysis, it will be convenient to begin with
the closed-sandwich configuration shownin figure l(a). Oncethe
governing equation for the temperature distribution has been formulated
for this case, only simple modifications need be madeto obtain the cor-
responding equations for the other configurations.

Closed-sandwich configuration. - The analysis begins with the appli-

cation of the conservation-of-energy principle to an elementary volume

of fin, which is shown as shaded in figure 2. Under steady-state con-

ditions_ the net outflow of energy from such an element must be zero_

therefore,

+ (d%et) : 0 (2)(d%et) c rad

For a thin (one-dimensional) fin, the net outflow of heat due to con-

duction is

d2T

(d%et)c = -kt _ _ (3)

per unit length normal to the plane of the figure. The net outflow of

radiant energy is the difference between the emitted and the incident

radiation. The radiant emission is given by the Stefan-Boltzmann law as

[_T_(x_ 2 dAx, in which the factor 2 is introduced because both surfaces

of the element are emitting. With this, the net radiation may be

written

(d%et)rad -- -

where H denotes the incident energy falling upon x per unit time

and area.

The incident radiation comes from two distinct zones: (i) from the

opposite fin, and (2) from the base surfaces. The contribution from the

opposite fin will be derived first. Consider radiation leaving a typi-

cal surface element of the opposite fin_ say dAy. This element is in

reality a narrow strip, having a dimension dy in the plane of

figure 2, but extending to infinity in both directions._normal to the

of the figure. The energy emitted by dAy is _-|aT4(Y)IdAy_plane

and this is distributed over all directions in space. Of this, an



amount o_4(y)_y dFdAy_dAx is incident on dAx, where dFdAy_dAx is

an angle factor for diffuse interchange. However, by the reciprocity

rule for diffuse angle factors, _y dFdA -dA = dAx dFdA -dA ° With
y x x y

this, the contribution of dAy to the incident energy at dA x is

aT4(y)dAx dFd_r_dA_} but such contributions arrive from all locations on

the opposite fin, and the total amount is found by integration:

2L

X- y
(5)

The radiation incident at _ from the base surfaces may be de-
rived in a similar manner. The final expressions are most easily ob-

tained by modifying equation (S). Since the base surface temperature

is uniform, it may be removed from under the integral sign. Additionally,

the integral of an infinitesimal angle factor yields a finite angle

factor. Applying this to the two base surfaces i and 2 (fig. 2) gives

dAxaT4 (FdAx- i + FdAx-2 )
(6)

With expressions (5) and (6), the radiant energy H(x) incident per

unit area at x is

2L

The net radiation may then be found by substituting H(x) into equa-

tion (4). Thus, with both the net radiation and net conduction avail-

able, the energy balance equation (2) may be evaluated. This gives

2L

+F x0kt d2T - 2oT4(x) - °_24(y)dFdA -dA - °Tb_ dAx-1
dx 2 x y

0

(7)

(s)
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Introducing the dimensionless variables

x = x/T,, y = y/_,, e = _/% (9)

equation (8) becomes

d2e

dX 2 (No)T, e4(X) - e4(Y)_%_%- (F%_ z + F%_
0

(io)

in which the conductance parameter Nc has already been defined by

equation (i). Because of the symmetry of the problem, it is clear that

e(X) and e(Y) are the same functions_ only the independent variables

have been interchanged. Thus, equation (i0) is an integrodifferential

equation for e. Since both e and eA appea_ the equation is non-

linear.

To complete the specification of the problem, the boundary con-

ditions must be stated and expressions must be provided for the angle

factors that appear in equation (i0). One of the boundary conditions is

that T = Tb at x = O. Additionally, there is a symmetry condition

at x = _ the mathematical representation of which is dT/dx = O. In

dimensionless terms, these are

e(o) = 1 (del_)x_l = o (n)

In the derivation of the angle factors, it is advantageous to make

use of special properties associated with surfaces that have one elon-

gated dimension (essentially infinite normal to the plane of fig. 2).

In general, the angle factor between an element dA x and an infinite

strip dAy is (ref. 6)

dFdAx-dAy = 21 dyd (sin _)dy
(i2)

wherein the angle _ is defined by the normal to dAx and the con-

necting line between dA x and dAy as shown in figure 2. From the
geometry of the figure

sin _ = (y - x)/_/(y - x) 2 + h 2



Carrying out the indicated differentiation results in

:S 2
2\:,/ aY (is)

For interchange between dAx and an infinite strip that spans a finite
dimension in the plane of the figure, a generalization of equation (12)

may be applied. For instance, for the angle factor to the base surface

2,

l (sin _" - sin _')
FdAx_ 2 =

(14)

F__2 : : -
(2

Similarly, for the base surface l,

where c/ and @' are defined in the lower sketch of figure 2. When

equation (14) is evaluated and dimensionless variables are introduced,

(2 - X) l (:5)

,j

F__ 1 = . _

With the foregoing formulation of the angle factor% the evaluation

of the energy conservation principle is now complete. There is, however,

one additional simplification that may be introduced into equation (i0).

This results from the symmetry of the temperature distribution about

x = L; that is, T(x) = T(2L - x). When this s_m:etry property is in-

corporated into equation (i0) along with the appropriate angle factors,
there follows

@)2:
_ . 04(y)dy ._ i

_ i+ ill X2 X 2 +

(N)
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Inspection of equation (17) reveals that there are two independent
parameters that must be specified for each solution: the conductance
parameter Nc and the aspect ratio h/l_ Further study indicates that
analytical solutions cannot be achieved, and numerical meansmust be
employed. The numerical solutions will be discussed after the governing
equations for the other configurations have been derived.

Open-sandwich configuration. - The energy equation for the open-

sandwich configuration is most conveniently derived by modifying the

foregoing analysis for the closed sandwich. In fact, for the open sand-
wich, it is only necessary to delete the terms that describe the radiant

interaction between the fins - the integral terms appearing in equation

(17). With this modification, the governing equation for the fin-

temperature distribution in the open-sandwich configuration becomes

1 a2e - 2e4(x) - r

"_L dX2

1
+_

X 2 -X
+ (18)

The boundary conditions remain as stated in equation (Ii).

By comparing equation (18) for the open sandwich with equation (17)
for the closed sandwich, a very significant mathematical difference is

apparent; namely, the former is a differential equation, while the lat-

ter is an integrodifferential equation. In general, differential equa-

tions are easier to solve than integrodifferential equations. While

equation (18) is, in fact, simpler than equation (17), numerical solu-

tions are still required. These will be discussed later.

Central-fin configuration. - The energy equation for the central

fin may, in turn, be derived by modifying equation (18) for the open

sandwich. The aspect requiring modification is the interchange between

the fin and base surfaces. For the central-fin configuration, the inter-

change occurs between dA x and a wall of height h/2 (assuming t < < h)

rather than of height h as in the open sandwich. Thus, wherever h

appears in equation (18), it is replaced by h/2. Additionally, both

the upper and lower sides of the central fin exchange heat with the base

surfaces, which requires that a multiplying factor of 2 be inserted in



ii

the angle factor terms of equation (18). Whenthese modifications are
made, the revised form of equation (18) nowapplicable to the central-
fin configuration is

2e (x)- z

X 2 -X
+ + (19)

The boundary conditions of equation (ii) continue to apply. Numerical

solutions of equation (19) will be discussed in the following paragraphs.

Solutions

Method. - As has already been indicated, it was necessary to use

numerical techniques to solve the foregoing equations for 8° The nu-

merical solutions were carried out on a Univac 1103 electronic digital

computer. The procedure for solving equation (17) will be described

first. In essence, a weighted iteration technique was employed. The

first step was to prescribe the parameters Nc and L/h; then, a trial

distribution of 8(Y) was selected. For a fixed value of X, the inte-

gral appearing on the right side of equation (17) was carried out

numerically. Then, another value of X was chosen and the integral

was carried out once again, and so forth. In this way, corresponding

to the particular 8 function, a value of the integral was generated

at every mesh point X in the range 0 < X < 1. This set of values

may be denoted by f(X)j while the remaining--terms on the right side,

aside from 84 , may be denoted by g(X). Thus, equation (17) may be

written as

d2---_8= (Nc) L [284 f(X)+ g(X 1dX 2 +
(2o)
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Integration of equation (20) subject to the boundary conditions (ii)

leads to

X X i

e(x) : i + 2(Nc)L/ If a_ dX-/ e'& dX) dX

/ox(/o
As previously described, f(X) is available for a particular trial distri-

bution of e, while g(X) is a known function of X. Therefore, the

integration indicated in the last term of equation (21) can be carried

out numerically. Also, by utilizing the trial distribution of e, the

integrals involving e4 may also be carried out. By these calculations,

a new e distribution is generated from equation (21).

In a direct iteration scheme, the new trial function would serve as

input to the next cycle of calculations. However, in a nonlinear system,

direct iteration may often lead to divergence rather than convergence.

The procedure used herein was to take the input and output e functions,

which may be respectively denoted by e and e and form their dif-n n+l'

ference. The trial function e* for the next cycle of calculations was

then constructed as

e* = 8n + h(en+ I - en) o s _ s i

The size of h could be controlled manually from the console of the com-

i
#Q

purer. An on-line typewriter printed oUt Jo (en+ I - en)dX , and adjust-

ments could be made in _ if the trend of this integral indicated di-

vergence. In general_ cases characterized by small L/h could be run

at _ values near i, while cases at large L/h required smaller

values to ensure convergence (as low as _ = 0. i).

Solutions were obtained for L/h values of 1/2, i, 2, 3, 4, and 5

for each of which parametric values of Nc were selected in the range

from 0 to i0. In all, 56 cases were solved for the closed-sandwich con-

figuration.
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The samebasic procedure was employedto find solutions of equa-
tions (18) and (19), respectively, for the open sandwich and the central
fin. However, there was one major simplification that resulted from the
fact that these equations are differential rather than integrodiffer-
ential_ namely, the f(X) no longer appears in equation (21). The fact
that it was no longer necessary to compute f(X) enabled the solutions
for equations (18) and (19) to be carried out more rapidly than those
for equation (17). The sameparameter ranges were covered in the solu-
tions of equations (18) and (19), as have already been discussed in con-
nection with the solutions of equation (17).

Results. - Each solution of the energy equations (17) to (19) pro-

vides a distribution of temperature along the fin. In view of the large

number of cases that has been considered, it is neither possible nor

necessary to present temperature profiles for all. Instead, a repre-

sentative set of profiles will be presented for each of the radiator

configurations. These results are plotted _n f_gure 3 for the closed-

sandwich, open-sandwich, and central-fln configurations. On each figure

curves are given for T/T b as a function of position x/L for para-

metric values of N c and L/h.

Figure 3(a) shows that the temperature drop along the fin is very

small when Nc is very small (see, e. g., the curves for Nc = 0.25).

This is due to the low thermal resistance of the fin. Additionall_

there is very little effect of L/h when Nc is small, although it is

clear that the temperature drop is greater as L/h increases. As N c

increases, so also does the temperature drop along the fin. The effect

of L/h also becomes much more marked at the higher N c values. For

a given value of Nc, it has been verified that the temperature profile

for the single, noninteracting fin falls slightly below that for

L/h = S. This is fully plausible, since the noninteracting fin is

equivalent to the case of L/h = _.

The trends just enumerated for the closed sandwich are also in evi-

dence in figures 3(b) and (c), which correspond respectively to the open

sandwich and the central fin. The curves on these latter two figures

fall somewhat lower than those of figure 3(a) because, for a given Nc

value, there is twice as much fin volume in the closed-sandwich con-

figuration as there is in the open sandwich or the central fin.

The figures generally show that, when Nc is high, the tempera-

tures in the central region of the fin are quite low. When it is re-

called that the emission is proportional to the fourth power of the tem-

perature, it is clear that the fin material in the central region is of

marginal utility. The presence of a larger base surface (smaller L/h)

tends to raise the temperature in the central region, making this part
of the fin more useful.
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HEAT TRANSFER

Heat-transfer results based on the foregoing numerical solutions

will now be presented and discussed for the separate configurations.

Comparisons among these results will then be made. A superposition

calculation of the heat loss will also be explored.

Heat-Transfer Characteristics

The heat-transfer results to be presented here will include the

heat loss to space from the fin and from those portions of the base sur-

face that interact radiatively with the fin. The heat loss from those

portions of the base surface that radiate directly to space without

interaction will not be included. In this latter category fall the upper

and lower surfaces of the squared-off tubes, that is, the horizontal sur-

faces of the squared-off tubes as they are pictured in figure i. The

heat loss from such surfaces is simply _T_ times their surface areaj

and this may be added at any time to the results presented herein.

Closed-sandwlch configuration. - When excluding the noninteracting

portions of the squared-off tube as discussed previously, the heat loss

to space from the closed-sandwich configuration is due to radiation from

the surface of the fin. The rate of heat loss from the fin surface per

unit area at x is oT4(x). The overall rate of heat loss Q from the

pair of fins that forms the sandwich is

2L

Q = 2/0 _T4(x)dx (22)

per unit length normal to the plane of figure i.
this becomes

In dimensionless terms,

i

Q -f e4(X)dX

0

(23)

in which the symmetry of e about x = L has been taken into account.

The group 4LoT_ is the heat loss from the fins under the condition

that their temperature is uniform at the value Tb. Such a condition

can be achieved only by fins of infinite thermal conductivity (Nc = 0).
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Therefore, 41_T_ represents the largest possible heat loss from the
system. The ratio expressed by equation (23) thus compares the actual

heat loss with the ideal heat loss. Such a ratio may be regarded as an

effectiveness of the system.

The effectiveness ratio represented by equation (23) has been

evaluated by numerical integration of the previously discussed tempera-

ture solutions. The results thus obtained are presented in figure _ as

a function of N c for parametric values of the aspect ratio L/h. In-

spection of the figure reveals that for any fixed L/h the heat loss

from the system decreases with increasing values of N c. This trend is

in complete accord with physical reasoning, since an increase in N c is
an indication of an increase in the thermal resistance of the fin

(because of a decrease in thermal conductivity k or fin thickness t).

The sharpest decrease in fin heat loss occurs at small values of Nc.

It may additionally be seen from the figure that the effectiveness

decreases monotonically with increasing L/h. Since L appears in the

ordinate variable as well as in L/h, this trend may be most conveniently

discussed by supposing L to be fixed. Then_ an increase in L/h cor-

responds to a decrease in the separation h between the fins. In par-

ticular_ the case of L/h = _ corresponds to the situation in which the

separation h vanishes, and the pair of fins forming the sandwich co-

alesces into a single fin of thickness 2t. Thus_ the heat-loss results

for the L/h = _ case are identical to those for a single, isolated fin

of thickness 2t. These isolated fin results were taken from reference 5.

To explain why the heat loss decreases with decreasing h (fixed L),

it is first necessary to describe the role of radiation within the

cavity of the closed-sandwich configuration. This radiation provides a

means of transport between the fins and the base surfaces and between

high- and low-temperature portions of the fin, which is in addition to

the heat conduction in the fin. In effect, the internal radiation and

the conduction are parallel heat-flow paths. Thus, the presence of the

internal radiation is equivalent to an increase in the thermal conduc-

tivity of the fin. The most important transport of radiation within the

cavity takes place between the base surfaces and the fins. Either by

physical reasoning or by inspection of equations (15) and (16), it is

easy to see that the transport between fin and base surface decreases

as the spacing h decreases. Additionally, from equation (13), it is

also seen that the transport between widely separated locations on the

fins (i.e., Y substantially different from X) decreases as h de-

creases. Thus, internal radiation becomes less effective as a transport

mechanism as h decreases. The trend among the curves of figure 4(a)

showing Q decreasing with decreasing h (fixed L) is thus made

plausible.
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It is interesting to inquire about the quantitative relation be-
tween internal radiation and fin heat conduction_ the sumof which
constitutes the total heat loss. The heat conducted into the fin at the
base Qc was calculated by Fourier's law:

Qc : -kt (24)

This equation was placed in dimensionless form and then evaluated from

the solutions of the energy equation (17). The ratio of Qc to the

total heat loss Q has been constructed_ and the results are plotted

in figure S. It is clearly seen from the figure that the importance of
heat conduction in the fin relative to internal radiation decreases as

L/h decreases. This is in accordance with the discussion of the pre-

ceding paragraph. Additionally, it is seen that heat conduction is the

dominant heat-transfer path at low values of Nc and that internal

radiation grows increasingly important as Nc increases. This follows

from the fact that small values of Nc indicate small thermal resist-
ance for heat conduction in the fin.

Open-sandwich configuration. - From a consideration of the right

diagram of figure !(b), it is clear that there is a heat loss to space

both from the fin and from the vertical base surface _alls that inter-

act with the fin. The net heat loss from the fin (both sides) is equal

to the heat conducted into the fin. From Fourier's law

Qf : 2[-kt(dT/dX)x=O] (25a)

in which the factor of 2 is included because there is an inflow at both

x = 0 and at x = 2L. In dimensionless terms_ this is

Qf _ i d9
(25b)

The net heat loss from the base surface is equal to the energy

emitted by the surface minus the incident radiant flux. The emission

is simply aT{h per unit length normal to the plane of the figure. The

incident radiation originates at the fin and at the opposite base sur-

face. In mathematical terms_ the net base surface heat loss is

(SSa)
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in which the factor of 2 is included because two base surfaces are in-

volved. By introducing dimensionless variables, this becomes

I f2% 1 (1-Fl_2) - _4(x)F% 1 (2Sb)

The angle factor FdAx_ I is already available in equation (16), while

the angle factor FI_ 2 for interchange between two parallel surfaces

follows from reference 8 (eq. (31-49)) as

2rl_ 2 -- + 1 2L (27)
h

The total heat loss Q from the system is found by adding Qb and

Qf:

Q - Qf + %____ (28)

As written in equation (28), Q is expressed as a ratio with the

quantity 4LdT 4 as with the closed sandwich. It will now be shown that

4LOTb4 is precisely equal to the maximum possible heat loss from the

system. For the case of infinite thermal conductivity (Nc = 0), the fin

temperature is uniform; that is, 8 = i throughout. In this instance_

Qb can be evaluated from equation (26b) by removing 8 from under the

integral sign. Additionally,

2
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where Ff_ I is the angle factor from the fin to the base surface i.
Thus,

Qb _-h (1 )
AI_T_ 2-_ - FI-Z - Ff-I

(29)

But, by angle factor algebra, FI_ 2 + FI_ f + FI_ s = i, in which FI_ s

indicates the angle factor from the base surface i to space. Clearly_

because of symmetry, FI_ s = FI_ f. Also_ from the reciprocity theorem

for diffuse angle factors, £LFf_ I = hFl_ f. Incorporating this into

equation (29), there follows

Qb h
m

4iXffb 2L Fl-f

(30)

It is to be remembered that this applies for the limiting situation

where the fin is isothermal (Nc = 0). The fin heat loss for this

limiting situation cannot be calculated from equation (Z5a) because k

is infinite and de/dX is zero. Instead, Qf is determined as the dif-
ference between the emitted and incident radiation. For the fin at uni-

form temperature Tb, this is

or

Qf h
1 - Fl-f (3z)

Now, adding equations (30) and (32) to find the total rate of heat loss

gives

This is the maximum possible heat loss from the system. Thus, the ratio

expressed by equation (28) is the effectiveness of the system as in the
case of the closed sandwich.

Values of the effectiveness have been determined by numerically

evaluating equations (25b) and (26b) in conjunction with the e solu-

tions of equation (IS). The results thus obtained have been plotted in
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figure 6 as a function of Nc for parametric values of the aspect ratio
L/h. The general trends that have been discussed in connection with
figure 4 for the closed-sandwich configuration are also in evidence in
figure 6 for the open-sandwich configuration. However, there are certain
interesting differences in detail. The decrease in Q with increasing
L/h (decreasing h) is muchsharper for the open sandwich than for the
closed sandwich. In considering this result, it should be noted that
for a given fin thickness t there is only half as muchfin volume in
the open-sandwich configuration as there is in the closed-sandwich con-
figuration. Consequently, there is less cross-sectional area for heat
conduction in the open sandwich. It is therefore reasonable that the
open sandwich should be more sensitive to the effects of internal radi-
ation than the closed sandwich. Consequently, as the internal radiation
diminishes with decreasing h, the heat loss Q will be more affected
for the open sandwich than for the closed sandwich. Comparisonof
numerical values between figures 6 and 4 will be reserved until later.

It is also of interest to know what fraction of the overall heat
loss is transferred from the fin and what fraction is from the inter-
acting portion of the base surface. This information is obtained di-
rectly from equations (2Sb) and (_6b) for Nc > O_ for Nc = O, equa-
tions (30) and (32) are used. A plot of Qf/Q is presented in figure 7.
Corresponding results for Qb/Q maybe readily obtained by applying the
relation Qb/Q= i - (Qf/Q). Inspection of the figure reveals that the
fin's fraction of the total heat loss is greatest for large values of
L/h and small values of Nc. The trend of Qf/Q increasing with in-
creasing L/h is related to the increase in fin surface area relative
to the base surface area. On the other hand, the changes in Qf/Q with
Nc are due to changes in fin temperature distribution. For small
values of Nc, temperatures throughout the fin are relatively high, and
the fin heat loss is correspondingly high. For high values of Nc, the
fin temperature drops off rapidly with increasing distance from the base
surface, and, as a consequence, the fin heat loss is low.

The open-sandwich configuration pictured in figure l(b) is unsym-
metrical in that the lower surface is a plane sheet, while the upper
surface i% in essence, a cavity. The vertical walls of the cavity are
at the temperature Tb, which is the highest temperature in the system.
It would therefore be expected that the heat loss to space from the
cavity side would exceed that from the plane side. It is of interest
to explore the relation between these heat losses quantitatively. The
heat loss to space from the plane side of the configuration is given by

2L

_plane side = O_ (_T4(x)dx
(34)
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Numerical results have been obtained by evaluating the integral with the

0 solutions of equation (18). The ratio of the heat loss from the plane

side to the total heat loss Q has been constructed, and the results

are presented in figure 8 as a function of N c for parametric values of

the aspect ratio L/h. As expected, the heat loss from the plane side

is less than one-half of the total (except in the limit at N c = 0).

From the figure, it is seen that, as the L/h ratio increases, the heat

losses from the plane and cavity sides tend to equalize (i.e., the ratio

plotted in fig. 8 approaches more closely to one-half). This is due to

the fact that the base surfaces play a less important role as L/h in-

creases (h decreases). Further study reveals that the unbalance in

heat loss between the cavity and plane sides is accentuated at high

values of N c. Large values of Nc are effective in diminishing the

fin heat loss relative to the base surface heat loss. Thus, at large

Nc, the cavity side is favored by virtue of the presence of the base
surfaces.

Central-fin configuration. - In common with the open sandwich, the

heat loss to space from the central-fin configuration takes place in

part from the fin and in part from the base surfaces. The net heat loss

from the fin is expressed as before by equation (2Sb). On the other

hand, the net base surface heat loss as given by equation (26a) must be

somewhat modified to take account of geometrical differences between the

open-sandwich and central-fin configurations. Figures l(b) and (c) show

that the radiant interchange in the central-fin configuration involves

base surface elements of length h/2 instead of length h as for the

open sandwich. Additionally, there are now four participating base sur-

face elements rather than two as in the previous case. When these modi-

fications are incorporated into equation (26a), it is found that the

dimensionless base surface heat loss is expressed by
_v

in which

2(I - FI_2) - 21 e4(X)FaAx-I (3Sa)

FI_ 2 = + i - (35b)

(55c)
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The overall rate of heat loss from the system is found by adding
the contributions of the fin and of the base surfaces. Numerical values
have been obtained by evaluating equations (2Sb) and (3Sa) in conjunc-
tion with the temperature solutions of equation (19). The heat-loss
results thus calculated have been plotted in figure 9 as a function of
Nc for parametric values of the aspect ratio L/h. The overall
appearance of this figure and the general trends amongthe results are
quite similar to those already enumeratedand discussed in connection
with figure 6 and, therefore_ need not be repeated. A numerical com-
parison of the heat-loss results of figure 9 with those of figures 6
and 4 will be madein the forthcoming section.

Inasmuchas there is a heat loss to space from both fin and base,
it is of interest to inquire about the relative importance of each. The
fin heat loss has been calculated from equation (2Sb), and_ with this
infoTmation, the ratio Qf/Q has been constructed. The results are
plotted in figure i0, where it is seen that the fin's contribution to
the overall heat loss is greater for large L/h and for small Nc. The
explanation of these trends has already been discussed in connection
with figure 7. A numerical comparison of figures i0 and 7 showsthat,
for large L/h, there is little difference between the Qf/Q values for
the open sandwich and for the central fin. This is fully plausible inas-
muchas the base surface plays only a minor role when L/h is large.
The detailed arrangement of fin and base surface should therefore have
little effect. Onthe other hand, there are larger departures between
the two sets of results at small L/h, with the Qf/Q values for the
open sandwich (fig. 7) being higher than those for the central fin
(fig. lO).

Comparison on Basis of Equal Fin Weight

The foregoing presentation of results has been focused on the heat-

transfer characteristics of each of the specific configurations under

study. Now, consideration will be given to a comparison of the heat-

transfer performance of these configurations. As a basis for the com-

parisonj the condition of equal fin weight has been selected here.

Other bases of comparison for the complete radiator configuration are

possible, one of which might be equal radiator (tube plus fin) weight,

but this involves variables such as tube wall thickness that are not

among the parameters of this study.

Referring to figure i, it is clear that the condition of equal fin

weight is achieved when the thickness of each of the fins comprising

the closed sandwich is one-half that of the fins in the other configu-

rations. The fin thickness enters the analysis only in the Nc parame-
ters (see eq. (i)). Thus, for a comparison at equal fin weight, the
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Nc parameter for the closed-sandwich configuration should be taken
twice as large as the Nc parameter for the other two configurations.

A comparison of the heat-loss characteristics of the various fin-
tube configurations is presented in figure ii. This figure is sub-
divided into several graphs, with each graph corresponding to a fixed
fin weight. There are three curves in each graph to represent the re-
sults for each of the three configurations. Figure l!(a) contains com-
parisons for the lower Nc values, while figure ll(b) is for the higher
Nc values. The abscissa variable for all the graphs is L/h.

Inspection of the figures showsthat the major differences in heat-
transfer performance amongthe various configurations occur at small
values of L/h. This occurrence maybe understood by recalling that the
importance of the base surface heat loss is greatest when L/h is small.
Therefore, it is natural that the details of the base surface arrange-
ment should be important for small L/h. As L/h increases, it is seen
from the graphs that the spread amongthe curves diminishes. In practice,
it would be expected that L/h values in excess of three would be most
probable. In such an event, the performance differences amongthe con-
figurations are quite moderate. For example, in the middle graph of
figure ll(a), which represents a practically realistic level of Nc, the
overall spread amongthe curves is about 3 percent at L/h = 3.

Generally speaking, the spread amongthe curves grows larger on a
percentage basis as the level of Nc increases. This is related to the
increasing role of the base surface with increasing Nc. The Nc values
of figure ll(a) lie in the range of current practical interest, while
those of figure ll(b) are somewhaton the high side.

The open-sandwich configuration appears to showthe best heat-
transfer characteristics amongthe various configurations studied here.
However, except at low values of L/h, the margin of difference is not
decisive.

Superposition of Results for Noninteracting Surfaces

The heat-transfer results that have been presented in this report
have been derived from rather lengthy numerical solutions. It is worth-
while inquiring whether a close approximation to these results can be
achieved by a combination of other, more easily derivable results. In
this connection, it is natural to take as a starting point the heat-loss
results for the single, noninteracting fin. These results are readily
available in the open literature (e.g., in refs. i and 2). To these
results for the noninteracting fin should be addeda quantity that char-
acterizes the heat loss of the base surface and, in particular, that
part of the base surface that interacts with the fin. (As previously
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noted, those portions of the squared-off tube that do not interact with
the fin have not been included in this study.) Perhaps the most reason-
able heat loss to take for this purpose is that portion of the base-
surface emission that streams directly out to space. For example, if
the base surface emission for the open-sandwich configuration (fig. l(b))

is 2 , then the portion Qb that would go directly to space is

(s6)

where F!_ s is the angle factor from one of the base surfaces (sa_

base surface i) to space.

In the closed-sandwich configuration (fig. l(a)) those parts of the

base surface that interact with the fins are internal to the system.

So, for this case, FI_ s would be identically zero. Thus, the super-

position discussed previously cannot be applied to the closed-sandwich

configuration.

For the open-sandwich configuration, the base surface contribution

Q_ to the superposition given by equationis In dimensionless

form, this becomes

h__ F (36a)

By angle factor algebra, FI_ s is related to the FI_2, as given by
equation (27), as follows:

i (37)

Equation (58a) is to be added to the results for the single, noninter-

acting fin that are represented by the L/h = _ curve of figure 6.

The actual superposition has been carried out in figure 12(a), where

results are shown only for selected values of L/h to preserve clarity.

The solid curves are the results that previously appeared in figure 6,

while the dashed curves are those obtained by the superposition. The

figure indicates that the heat-loss results predicted by the super-

position method are, on the one hand, low at large values of N c and

are, on the other hand, high at small values of N c. Indeed, for

N c = O, the superposition method would prediCt an ordinate value that
would exceed unity by an amount equal to the right side of equation (56a)°

Further, there is no reason to believe that, for L/h values exceeding

5, the results from the superposition method may not fall high even for

large N c. From an overall appraisal of figure 12(a), it may be
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concluded that the superposition method applied here is not satisfactory
for practical calculation purposes_ at least for the open-sandwich con-
figuration.

The sametype of superposition has been attempted for the central-
fin configuration. The base surface contribution is given by equations
(36a) and (57) as before, but now the appropriate expression for
FI_2 is equation (35b). A comparison of the heat-transfer predictions
from the superposition method with those of the numerical solutions is
shownin figure 12(b). The general characteristics of the comparison
are very similar to those of figure 12(a), except that now the dashed
curve lies above the solid curve for L/h = 5. The general conclusions
relating to the practical utility of the superposition method remain as
previously stated.

CONCLUDINGREMARKS

The foregoing analysis has provided results for radiator finned-

tube configurations in which the tubes have been idealized as having

squared-off exterior surfaces. It would be expected, however, that the

squaring off will not have a decisive effect on the heat-transfer re-

sults in the L/h range of practical interest (i.e., larger L/h).

An important contribution of this study relates to the conclusions

that follow from comparisons among the results. Such comparisons on the

basis of equal fin weight show that, for aspect ratios and N c values

of practical interest, the heat-transfer performance does not differ

appreciably among the various configurations that have been studied. In

the practical range of L/h, it is not expected that the essence of this

conclusion will be altered when round tubes (rather than squared-off

tubes) and highly emissive nonblack surfaces are used. Under the con-

dition of equal tube weight_ it follows that optimizations worked out

for one of the configurations should apply to the others.

On the basis of the aforementioned comparison_ if tube-portion

weights are comparable, it would appear that other factors that are not

related to heat transfer may ultimately fix the choice of the fin and

tube configuration. Another utility of the present report relates to

the presentation of a correct method of approach_ both for black and for

nonblack surfaces.

Heat Transfer Laboratory

Department of Mechanical Engineering

University of Minnesota

Minneapolis, Minn.

July i0, 1962
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APPENDIX- ANALYSISFORNONBLACKSURFACES

Consideration will be given here to the derivation of equations
governing energy transport in the closed-sandwich configuration. The
corresponding equations for the other configurations can be derived
from those of the closed sandwich in a manner identical to that employed
in the body of the report. Therefore, the other configurations will not
be treated here.

The radiant energy leaving a nonblack surface consists not only of
emission, but also includes the reflected portion of the incident radi-
ation. For diffuse reflection and emission at a surface, the reflected
and emitted energies have the samedirectional distributions, and no
distinction need be madebetween them. It is therefore convenient to
define a new energy quantit_ the radiosity B, as the sumof the emit-
ted and reflected energies per unit time and area:

B = e_T_ + 0H (A1)

where H is the incident energy per unit time and area. For a gray

surface, the reflectivity 0 is equal to (1 - e), and additionally

a, ---- g,,

By utilizing the radiosity, the analysis previously given for the

black-surfaced, closed-sandwichconfiguration can be readily generalized.

It will be assumed here for simplicity that all surfaces are gray and

have the same emissivit_ but the latter restriction can be lifted with-

out difficulty. The energy balance (eq. (2)) on an elementary volume

of fin as shown in figure 2 continues to apply, as does the net conduc-

tion given by equation (3). The net radiation is equal to the difference

between the energy emitted and energy absorbed. The emitted energy is

le_T_(x)l 2 dAx, while the absorbed radiation is _H(x)dA x. With this,
L _

the expression for the net radiation is

(dQnet) rad = eI2CfI'4Cx)- H(x)] dAx
(A2)

The incident energy H(x) comes from two distinct zones as before:

(i) from the opposite fin and (2) from the base surfaces. The first of
these contributions has essentially the same mathematical representation

as before, except that the emissive power _T4(y) is replaced by the

radiosity B(y). Thus, the generalization of equation (5) applicable to

nonblack surfaces is

2L

(As)
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The contribution of the base surfaces to H(x) must be considered in

somewhat greater detail. Whereas an isothermal black surface has uni-

form emissive power, it is not necessarily true that an isothermal non-

black surface has uniform radiosity. In general, the radiosity on such

a surface will not be uniform. Thus, for the case of nonblack surfaces,

it is necessary to find the contribution to H(x) from each element of

base surface and then integrate to find the total contribution. This is

identical to the procedure employed in deriving expression (5). Pro-

ceeding along the same lines, but replacing emissive powers by radio-

sities, the contribution of the base surfaces to H(x) is found to be

II ih I h

B (Zl)_-aA l +

Zl=O z2=O

(A4)

The radiosities B(Zl) and B(z2) are equal when zI = z2 because of

symmetry.

The incident energy H(x) is the sum of expressions (A3) and (A4).

These may be employed to evaluate equation (A2) for the net radiation

at dAx. With this and with the net conduction from equation (5), the

heat balance (eq. (2)) becomes

2L

h (z:)_-_= I h
- B +

i=0 z2=0

It is convenient to introduce dimensionless variables X, Y, and
defined by equation (9), and in addition

(AS)

as

--B/:T_ zI --Zl/h Z2 --_.Jh (A6)



27

Also, because of symmetry B(y) = B(2L - y), B(z!) = B(z2), B(z l) =

B(h - Zl). Incorporating all this into equation (AS), there is obtained

i d2e = 2e4 .

+

+

.i/z

[ix| _(zl)aZl 2 _./h\213/2

+

÷

X_l - zI)

[X2 + (-_)2(I - ZI)215/2

(2 - X)Z I

(2 - x)(i- zI)

J

(AV)

in which the angle factors between dAx and dA I and between dA x and

dA 2 have been evaluated by application of equation (12) with dy re-

placed by dz. The boundary conditions on e remain as stated in equa-

tion (ii).

Inspection of equation (A7) reveals that there are three unknown

functions: the temperature distribution _(X) and the radiosity dis-

tributions _(Y) and _(Z). Two additional relations between the un-

knowns are therefore required. These relations may be derived by making

use of the radiosity equation (AI). First, applying this to the location
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x and noting that the incident flux H(x)/_ is given by the quantity
within the braces on the right side of equation (A7), there follows

_(X) = ¢e4 + (i- ¢){Terms within braces of eq. (A7)} (AS)

Because of symmetry, _(X) = _(Y) when X = Y. So, _(X) and _(Y) are

the same functions; only the independent variables have been inter-

changed. It then follows that equation (AS) is essentially an integral

equation for _(X). An additional relation between the unknowns is ob-

tained by applying the radiosity equation to a surface element on one

of the base surfaces. After evaluating the incident radiation from the

fins and the opposite base surface, equation (AI) becomes

_(Zl)_ _+ (1- c)
2

" i/2

i [,
(za - Zl)a+ 4

i

(_- x)zI x(1- zI)

+ [ "h_2z2-]3/2+(2 - x)2 + k_) l] [x2+ (-_)2(1-Zl)J312

+
(2- x)(l-zI) ]

J

(A9)
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Because of symmetry, _(Z1) = _(Z2) when Z 1 = Z 2. So, _(Zl) and _(Z2)

are the same functions; only the independent variables have been inter-

changed. Equation (A9) is therefore an integral equation for finding

The governing equations for the energy transfer in the closed-

sandwich configuration with nonblack surfaces are embodied in (A7),

(AS), and (A9). Simultaneous solution of this nonlinear, integro-

differential system is required to determine the heat-transfer charac-

teristics. By comparing this mathematical system with equation (17), it

is clear that the consideration of nonblack surfaces adds a computational

complexity to the problem in addition to new unknowns and parameters.
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